Spectral Deformations of One-dimensional Schrödinger Operators

نویسندگان

  • F. Gesztesy
  • B. Simon
چکیده

We provide a complete spectral characterization of a new method of constructing isospectral (in fact, unitary) deformations of general Schrödinger operators H = − d2 dx2 + V in L2(R). Our technique is connected to Dirichlet data, that is, the spectrum of the operator HD on L2((−∞, x0))⊕L2((x0 ,∞)) with a Dirichlet boundary condition at x0. The transformation moves a single eigenvalue of HD and perhaps flips which side of x0 the eigenvalue lives. On the remainder of the spectrum, the transformation is realized by a unitary operator. For cases such as V (x) → ∞ as |x| → ∞, where V is uniquely determined by the spectrum of H and the Dirichlet data, our result implies that the specific Dirichlet data allowed are determined only by the asymptotics as E → ∞. §

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operators and De Branges Spaces

We present an approach to de Branges’s theory of Hilbert spaces of entire functions that emphasizes the connections to the spectral theory of differential operators. The theory is used to discuss the spectral representation of one-dimensional Schrödinger operators and to solve the inverse spectral problem.

متن کامل

Comparison Theorems for the Spectral Gap of Diffusions Processes and Schrödinger Operators on an Interval

We compare the spectral gaps and thus the exponential rates of convergence to equilibrium for ergodic one-dimensional diffusions on an interval. One of the results may be thought of as the diffusion analog of a recent result for the spectral gap of one-dimensional Schrödinger operators. We also discuss the similarities and differences between spectral gap results for diffusions and for Schrödin...

متن کامل

Fourier Method for One Dimensional Schrödinger Operators with Singular Periodic Potentials

By using quasi–derivatives, we develop a Fourier method for studying the spectral properties of one dimensional Schrödinger operators with periodic singular potentials.

متن کامل

Trace Formulae and Inverse Spectral Theory for Schrödinger Operators

We extend the well-known trace formula for Hill's equation to general one-dimensional Schrodinger operators. The new function <J , which we introduce, is used to study absolutely continuous spectrum and inverse problems. In this note we will consider one-dimensional Schrodinger operators d2 (IS) H = -j-1 + V(x) onL2(R;dx)

متن کامل

Direct and Inverse Spectral Theory of One-dimensional Schrödinger Operators with Measures

We present a direct and rather elementary method for defining and analyzing one-dimensional Schrödinger operators H = −d2/dx2 + μ with measures as potentials. The basic idea is to let the (suitably interpreted) equation −f ′′+μf = zf take center stage. We show that the basic results from direct and inverse spectral theory then carry over to Schrödinger operators with measures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996